• Zielgruppen
  • Suche
 

Data Mining II

Overview

In many modern applications, data scientists face challenges which go beyond the basic techniques introduced in Data Mining I.

In this course we will cove advanced data mining techniques to handle large data volumes, volatile data streams and complex object descriptions. These topics cover the Volume, Velocity and Variety aspects of Big Data and comprise major challenges for big data analytics.

ECTS points: 4

 

Course content

  • Big data challenges for data mining
  • Mining over high dimensional data (feature selection, dimensionality reduction, high-dimensional clustering)
  • Mining over large object cardinalities (parallel-, distributed-mining, summarization and sampling)
  • Mining over data streams (stream classification, stream clustering, change detection)
  • Multi-view and Multi-instance learning

Schedule

  • Lecture: every Thursday 10:00 - 11:30, starting 27.10.2016
  • Tutorials: directly after the lecture, 11:45-12:30
  • Room: 235 (3703), Appelstraße 4, 30167 Hannover

Teaching team

     !!! Please check Stud.IP for announcements, material and up-to-date information on the course.

    !!! For live streaming use this link.

    •