Q1. Bayes’ Nets Modeling

Consider the following domain:

- Urbanization (U)
- Deforestation (D)
- Soil erosion (S)
- Global warming (G)
- Traffic (T)
- Cavity (C)
- Baseball game (B)

(a) Construct the Bayes net from the above domain. \(U, D, S, G, T, C \) and \(B \) represent random variables of this domain. There can be more than one ways to model the Bayes net from the domain above, but you should have an explanation for your answer.

(b) Define the CPT (Conditional Probability Table) for each node (random variable) in your Bayes network topology (Hint: CPT for \(U \) can be defined as \(P(U) \))

Q2. Bayes’ Nets Representation and Conditional Independence

Assume we are given the following ten Bayes’ nets, labeled \(G_1 \) to \(G_{10} \):
Assume we are also given the following three Bayes’ nets, labeled B_1 to B_3:

(a) Assume we know that a joint distribution d_1 (over $A; B; C$) can be represented by Bayes’ net B_1. Mark all of the following Bayes’ nets that are guaranteed to be able to represent d_1.

- G_1
- G_2
- G_3
- G_4
- G_5
- G_6
- G_7
- G_8
- G_9
- G_{10}

- None of the above.

(b) Assume we know that a joint distribution d_2 (over $A; B; C$) can be represented by Bayes’ net B_2. Mark all of the following Bayes’ nets that are guaranteed to be able to represent d_2.

- G_1
- G_2
- G_3
- G_4
- G_5
- G_6
- G_7
- G_8
- G_9
- G_{10}

- None of the above.

(c) Assume we know that a joint distribution d_3 (over $A; B; C$) cannot be represented by Bayes’ net B_3. Mark all of the following Bayes’ nets that are guaranteed to be able to represent d_3.

- G_1
- G_2
- G_3
- G_4
- G_5
- G_6
- G_7
- G_8
- G_9
- G_{10}

- None of the above.

(d) Assume we know that a joint distribution d_4 (over $A; B; C$) can be represented by Bayes’ nets B_1, B_2, and B_3. Mark all of the following Bayes’ nets that are guaranteed to be able to represent d_4.

☐ G_1 ☐ G_2 ☐ G_3 ☐ G_4 ☐ G_5
☐ G_6 ☐ G_7 ☐ G_8 ☐ G_9 ☐ G_{10}

☐ None of the above.