Announcements

- Applied Data Science Seminar
 - Wednesday, 17th of July: 15:00 – 18:00
 - “Natural language understanding for smart assistants”, Lucie Flekova, Amazon Alexa AI
 - Appelstraße 9a, 15th floor
 - More Info: https://www.l3s.de/de/node/1858
CS 188: Artificial Intelligence

Reinforcement Learning

Instructors: Pieter Abbeel and Dan Klein
University of California, Berkeley
Hannover: Wolfgang Nejdl

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Reinforcement Learning
Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK – initial]
Example: Learning to Walk

Training

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Video: AIBO WALK – finished]

Finished

[Kohl and Stone, ICRA 2004]
Example: Sidewinding

[Video: SNAKE – climbStep+sidewinding]
Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]
The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try out actions and states to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning
Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- Step 2: Solve the learned MDP
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

- **A**
- **B**
- **C**
- **D**
- **E**

Assume: $\gamma = 1$

Observed Episodes (Training)

1. **Episode 1**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

2. **Episode 2**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

3. **Episode 3**
 - E, north, C, -1
 - C, east, D, -1
 - D, exit, x, +10

4. **Episode 4**
 - E, north, C, -1
 - C, east, A, -1
 - A, exit, x, -10

Learned Model

$T(s, a, s')$	$T(B, east, C) = 1.00$	$T(C, east, D) = 0.75$	$T(C, east, A) = 0.25$...
$R(s, a, s')$	$R(B, east, C) = -1$	$R(C, east, D) = -1$	$R(D, exit, x) = +10$...

...
Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

\[E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[\hat{P}(a) = \frac{\text{num}(a)}{N} \]

\[E[A] \approx \sum_{a} \hat{P}(a) \cdot a \]

Why does this work? Because eventually you learn the right model.

Unknown P(A): “Model Free”

\[E[A] \approx \frac{1}{N} \sum_{i} a_i \]

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Passive Reinforcement Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Assume: $\gamma = 1$

Input Policy π

- B
- C
- D
- A
- E

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

- A: -10
- B: +8
- C: +4
- D: +10
- E: -2
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

 $$V_0^\pi(s) = 0$$

 $$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

 - This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s_1') + \gamma V_k^\pi(s_1')$$
$$sample_2 = R(s, \pi(s), s_2') + \gamma V_k^\pi(s_2')$$
$$\ldots$$
$$sample_n = R(s, \pi(s), s_n') + \gamma V_k^\pi(s_n')$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i sample_i$$
Temporal Difference Learning
Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:

$$\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample}$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s))$$
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important:
 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]
 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q(s, a)
\]

\[
Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]
\]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- **Full reinforcement learning: optimal policies (like value iteration)**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal: learn the optimal policy / values**

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- **Value iteration**: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- **Q-Learning: sample-based Q-value iteration**

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)[\text{sample}] \]
Video of Demo Q-Learning -- Gridworld
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)