Refinement of keyword queries over structured data with ontologies and users

Advanced Methods of IR
Elena Demidova
SS 2015

Materials used in the slides:
Database queries: expressiveness vs. usability

Usability

Easy to use

Complicated

Expressiveness

Less expressive

More expressive

Keyword search
possibly imprecise results
BANKS, DBXPlorer, Discover ('02)

IQ^P, FreeQ, SQAK

Goal: Expressive AND Easy to use

Structured queries
language, schema
(SQL, SPARQL, XQuery)
OBE ('75), NLQ ('99)

Keyword search
possibly imprecise results
BANKS, DBXPlorer, Discover ('02)

Expressiveness

Less expressive

More expressive

adapted from: [Tata et. al 2008]
Database queries: expressiveness vs. usability

• **Database queries:**
 • Knowledge of database schema
 • Knowledge of query language syntax

• **Keyword search:**
 • Easy-to-use but imprecise
 • Ambiguous: unclear information need

• **Automatic keyword query interpretation:**
 • Automatically translate keyword query in the (most likely) structured query (-ies) (CNs)
Recap: Candidate Network (CN)

A *Candidate Network (CN)* is a connected tree of keyword relations. Every two adjacent keyword relations R_i, R_j in CN are joined based on the fk-reference in the schema G_s.
Recap: CN ranking factors

Ranking can be performed at **CN and MTJNT levels**

Typical ranking factors include:

- Size of the CN tree – preference to the short paths
- IR-Style factors
 - Frequency-based keyword weights
 - Keyword selectivity (IDF)
 - Length normalizations
- Global attribute weight in a database (PageRank / ObjectRank)

Typically, the factors are combined

Ranking result: a list of ordered CNs
When ranking alone fails …

London… What do you mean?
A book title?
An author?
Query interpretation techniques

• **Automatic keyword query interpretation:**
 • Automatically translate keyword query in the *(most likely)* structured query (-ies)
 • **No one size fits all** – no perfect ranking for every query and every user
 • If ranking fails, navigation cost can be unacceptable
 • too many interpretations / search results

• **Interactive query refinement**
 • **Goal:** Enable users to *incrementally refine* a keyword query into the *intended* interpretation on the target database in a *minimal* number of interactions
London... What do you mean?

A book title?

An author name?

Elena Demidova: Advanced Methods of Information SS 2015
IQ^P: Probabilistic Incremental Query Construction

1. The user enters a keyword query in the search box.

2. IQ^P interprets the keyword query using database queries, and returns a list of possible interpretations to the user.

3. IQ^P suggests a set of query construction options for the user to refine her query. By choosing the correct options, the user can shrink the number of possible interpretations quickly.

4. The user identifies the correct database query. After double clicking this query, the user is presented with the query results.
IQ^p: incremental query construction enabling techniques

- A conceptual framework for probabilistic incremental query construction
- A probabilistic model to assess the probability of the possible informational needs represented by a keyword query
- An algorithm to perform the optimal query construction with minimal number of user interactions
Query interpretation

\[K = \text{"hanks cruise 2001"} \]

\[\sigma_{\text{hanks} \in \text{name(Actor)}}: \text{hanks} \]

\[\sigma_{\text{cruise} \in \text{name(Actor)}}: \text{cruise} \]

\[\sigma_{\text{2001} \in \text{year(Movie)}}: \text{2001} \]

\[T = \sigma_{? \in \text{name(Actor)}} \bowtie \text{Acts} \bowtie \sigma_{? \in \text{year(Movie)}} \bowtie \text{Acts} \bowtie \sigma_{? \in \text{name(Actor)}} \]

\[Q = \sigma_{\text{hanks} \in \text{name(Actor)}} \bowtie \text{Acts} \bowtie \sigma_{\text{2001} \in \text{year(Movie)}} \bowtie \text{Acts} \bowtie \sigma_{\text{cruise} \in \text{name(Actor)}} \]

\[\text{partial interpretation of } K, \text{ sub-query of } Q \]

\[\text{complete interpretation of } K \text{ (structured query)} \]

\[\text{interpretation space of } K \]
Query hierarchy

\(K = \text{“Tom Hanks 2001”} \)
Query construction options (QCO)

Idea: use partial interpretations (sub-queries) as user interaction items (QCO)

Problem: large number of queries – and sub-queries (QCOs)

\[
Q' = \sigma_{\text{hanks} \in \text{name}(\text{Actor})} \bowtie \text{Acts} \bowtie \sigma_{2001 \in \text{year}(\text{Movie})}
\]

How to select a QCO to present to the user?
Query construction plan (QCP) as a binary tree

Idea: use sub-query relations to organize the options in a (binary) tree structure
The root node is the entire interpretation space

```
σ hanks ∈ name(Actor):hanks
QCO1:
Yes
QCO2: σ 2001 ∈ year(Movie):2001
Remove queries conflicting with QCO1
Remove queries that subsume QCO1

σ hanks ∈ name(Actor) ⋈ Acts ⋈ σ 2001 ∈ year(Movie) ⋈ Acts ⋈ σ cruise ∈ name(Actor)
```

A leaf node is a single complete query interpretation

Problem: How to find an optimal QCP?
Defining a cost function for QCP

Idea: define a cost function
Take query probability into account
Construction of the most likely queries should not incur much cost

\[
Cost(QCP) = \sum_{\text{leaf} \in QCP} \text{depth}(\text{leaf}) \times P(\text{leaf})
\]

Given a keyword query \(K \), how to compute the probability of leaf nodes (i.e. complete query interpretations of \(K \))?

\(K \) (a keyword query) = \{hanks, 2001, cruise\}

\(Q \) (a leaf node of QCP) =

\[
\sigma_{\text{hanks} \in \text{name (Actor)}} \bowtie \text{Acts} \bowtie \sigma_{2001 \in \text{year (Movie)}} \bowtie \text{Acts} \bowtie \sigma_{\text{cruise} \in \text{name (Actor)}}
\]

\(P(\text{leaf}) = P(Q|K) \): the conditional probability that, given \(K \), \(Q \) is the user intended complete interpretation of \(K \).
Query interpretation

A query interpretation consists of:

- A set of **keyword interpretations** I that map a keyword to a value of an attribute (also interpretations as an attribute or table name are possible)

$$
\sigma_{\text{hanks} \in \text{name(Actor)}: \text{hanks}} \quad \sigma_{\text{cruise} \in \text{name(Actor)}: \text{cruise}} \quad \sigma_{2001 \in \text{year(Movie)}: 2001}
$$

- A **query template** T

$$
T = \sigma_{? \in \text{name(Actor)}} \bowtie \text{Acts} \bowtie \sigma_{? \in \text{year(Movie)}} \bowtie \text{Acts} \bowtie \sigma_{? \in \text{name(Actor)}}
$$
Query interpretation: assumptions

Assumption 1 (Keyword Independence): Assume that the interpretation of each keyword in a keyword query is independent from the other keywords.

Assumption 2 (Keyword Interpretation Independence): Assume that the probability of a keyword interpretation is independent from the part of the query interpretation the keyword is not interpreted to.
Probability of a query interpretation

\[P(Q \mid K) = P(I, T \mid K) \]

- \(I \) is the set of keyword interpretations \(\{A_i:k_i\} \) in \(Q \)

\[\sigma_{\text{2001} \in \text{year}(\text{Movie}):\text{2001}} \quad \sigma_{\text{cruise} \in \text{name}(\text{Actor}):\text{cruise}} \]

\[\sigma_{\text{hanks} \in \text{name}(\text{Actor}):\text{hanks}} \]

- \(T \) is the template of \(Q \)

\[T = \sigma_{\? \in \text{name} (\text{Actor}) \bowtie \text{Acts} \bowtie \sigma_{\? \in \text{year} (\text{Movie}) \bowtie \text{Acts} \bowtie \sigma_{\? \in \text{name} (\text{Actor})} } \]

\[P(Q \mid K) \propto \left(\prod_{k_i \in K} P(A_i : k_i \mid A_i) \right) \times P(T) \]

Estimates for \(P(T) \) and \(P(A_i : k_i \mid A_i) \)?
Probability of a keyword interpretation

- We model the formation of a query interpretation as a random process.
- For an attribute A_i, this process randomly picks one of its instances a_j and randomly picks a keyword k_i from that instance to form the expression $\sigma_{k_i} \in A_i$.
- Then, the probability of $P(\sigma_{k_i} \in A_i | \sigma? \in A_i)$ is the probability that $\sigma_{k_i} \in A_i$ is formed through this random process.

Example:

$T = \sigma? \in \text{name (Actor)} \bowtie \text{Acts} \bowtie \sigma? \in \text{year (Movie)} \bowtie \text{Acts} \bowtie \sigma? \in \text{name (Actor)}$

$Q = \sigma_{\text{hanks}} \in \text{name (Actor)} \bowtie \text{Acts} \bowtie \sigma_{2001} \in \text{year (Movie)} \bowtie \text{Acts} \bowtie \sigma_{\text{cruise}} \in \text{name (Actor)}$

$P(\sigma_{\text{hanks}} \in \text{name (Actor)} | \sigma? \in \text{name (Actor)})$
Probability of a keyword interpretation

\(P(\sigma_{ki} \in A_i | \sigma_j \in A_j) \) can be estimated using Attribute Term Frequency (ATF):

\[
\text{ATF}(k_i, A_i) = \frac{\text{TF}(k_i, A_i) + \alpha}{N_{A_i} + \alpha \times B}
\]

ATF\((k_i, A_i) \) - the normalized keyword frequency of \(k_i \) in \(A_i \)

\(N_{A_i} \) – the number of keywords in \(A_i \)

\(\alpha \) - a smoothing parameter (typically \(\alpha = 1 \): Laplace smoothing)

\(B \) – the vocabulary size
Probability of a query template

\[P(T) = \frac{\text{#occurences}(T) + \alpha}{N + \alpha B} \]

- \#occurences(T) - number of queries in the log using \(T \) as a template
- \(N \) - total number of queries in the log
- \(\alpha \) - smoothing parameter, typically set to 1
- \(B \) – a constant

When the query log is absent or is not sufficient, we assume that all query templates are equally probable.
Example: $P(Q|K)$ estimation

Compute $P(Q|K)$ for:

$K = \{\text{hanks, 2001, cruise}\}$

$Q = \sigma_{\text{hanks} \in \text{name (Actor)}} \bowtie \text{Acts} \bowtie \sigma_{2001 \in \text{year (Movie)}} \bowtie \text{Acts} \bowtie \sigma_{\text{crui} \in \text{e name (Actor)}}$

N_{A_i} – the number of keywords in A_i

$\alpha = 1$

B – the vocabulary size

$$P(Q | K) \propto \left(\prod_{k_i \in K} P(A_i : k_i | A_i) \right) \times P(T)$$

$$\text{ATF}(k_i, A_i) = (\text{TF}(k_i, A_i) + \alpha) / (N_{A_i} + \alpha \times B)$$

Query log is not available

Work in groups: 10 minutes
Example: \(P(Q|K) \) estimation

Compute \(P(Q|K) \) for:

\(K= \{ \text{hanks, 2001, cruise} \} \)

\[
P(Q | K) \propto \left(\prod_{k_i \in K} P(A_i : k_i | A_i) \right) \times P(T)
\]

\[
\text{ATF}(k_i, A_i) = \frac{\text{TF}(k_i, A_i) + \alpha}{N_{A_i} + \alpha \times B}
\]

Query log is not available – \(P(T) \) is a constant

\[
P(Q | K) \propto (0.13 \times 0.1 \times 0.086) = 0.001118
\]

\[\begin{array}{|c|c|}
\hline
\text{Actor} & \text{id} & \text{name} \\
\hline
1 & \text{Tom Hanks} & \\
2 & \text{Collin Hanks} & \\
3 & \text{Tom Cruise} &
\end{array}\]

\[\begin{array}{|c|c|c|}
\hline
\text{Movie} & \text{id} & \text{title} & \text{year} \\
\hline
1 & \text{Catch Me If You Can} & 2002 \\
2 & \text{Cast Away - Verschollen} & 2000 \\
3 & \text{Scene by Scene} & 2001 \\
\hline
\end{array}\]
Query construction algorithm

- Query hierarchy can become very large
- Use a greedy algorithm
- Expand query hierarchy incrementally
- Use a threshold to restrict the size of the top level
- Select the QCO to be presented to the user based on Information Gain (IG)
- IG can be computed using probability of query interpretation
Evaluation on IMDB: interaction cost of IQ^P vs. ranking

- The median value of Rank (IQ^P) is 2
- Ranking has a high variance, ambiguous queries can receive ranks above 400
- The entire list can contain up to 3,500 queries
- The cost of construction stays within 15 options in the worst case
User study results: IQP interface vs. ranking

Example queries:

C₀: Find the role of Brad Pitt in the movie directed by Steven Soderbergh in 2004.

C₁₁: Find a movie directed by Blake Blue starring Conners Chad.

✓ 15 graduate CS students.
✓ 14 tasks in 7 complexity categories. Time-based competition. Category k: the correct query interpretation appears at the kth page of the ranking interface.
✓ IQP interface started to outperform the query ranking in C₃ (rank > 30).
✓ In C₁₁, IQP requires 4.3 less time.
IQP: discussion of results

✓ IQP enables users to incrementally refine a keyword query into the intended interpretation.
✓ Interaction cost of IQP has a much lower variance than the cost of ranking.
✓ Query construction outperforms ranking for the queries where the ranks of the intended query interpretations are above 30.
✓ Further experiments confirmed quality of the greedy algorithm and scalability for up to 100 tables.
Query construction for large scale databases

- **Freebase:**
 - 22 millions entities, more than 350 millions facts
 - more than 7,500 relational tables
 - about 100 domains
 - Wikipedia, MusicBrainz, ...
 - part of the LOD cloud

- **Goal:**
 - Enable efficient and scalable query construction solutions for large scale data
A film adaptation starring Tom Hanks was attempted [...] after the actor's performances in *The Terminal* (2004).

An article in *Entertainment Weekly* did a comparison to the Tom Hanks film *The Terminal*.

Tom Hanks' character Viktor Navorski is stuck at New York's JFK airport in the United terminal in *The Terminal*.

Feng Zhenghu has been likened to the Tom Hanks character in *The Terminal*.
Structured MQL query for „Tom Hanks Terminal“

http://www.freebase.com/query

Requires prior knowledge of:
✔ Schema: 7,500 relational tables
✔ Query language: MQL
1. The user enters a keyword query in the search box.

2. FreeQ interprets the keyword query using database queries, and returns a list of possible interpretations to the user.

3. FreeQ suggests a set of query construction options for the user to refine her query.

4. The user identifies the correct database query. After double clicking this query, the user is presented with the query results.
Limitations of the IQP query construction approach

- Inefficient QCOs
 - Too many keyword interpretations
 - A keyword interpretation subsumes a small proportion of the I-space
 - More general QCOs are needed

- Very large interpretation space
 - The number of subgraphs of the schema graph grows very sharply with the size of the schema graph. The occurrences of keywords are more numerous in a larger database. Too many query interpretations.
 - Existing query interpretation approaches rely on a completely materialized interpretation space. This is no longer feasible.
 - Need to enable incremental materialization of the interpretation space
Query-based QCOs

- **Keyword as schema terms or attribute values**
 - actor.name: hanks (Hanks is in the actor’s name)

```
hanks  →  actor.name  director.name  ....
terminal  →  film.name  company.name  location.name  ...
```

- **Joins using pk-fk relationships in the schema graph**
 - actor.name: hanks – acts – film.name: terminal
Ontology-based QCOs

- Freebase domain hierarchy
 - Arts & Entertainment, Society
- External ontologies
 - E.g. YAGO+F mapping between YAGO and Freebase
 - Person, Location, Object
FreeQ query hierarchy example

Ontology-based QCOs:
Arts & Entertainment: Tom Hanks
Actor: Tom Hanks

Query-based QCOs:
Actors: Tom Hanks

Society: Tom Hanks
Celebrity: Tom Hanks
Award Nomination: Tom Hanks
Award Nominee: Tom Hanks
Nominated For: Terminal

The arrows represent sub-query relationship
A measure of QCO efficiency

Entropy of the query interpretation space:

\[H(\zeta) = - \sum_{I \in \zeta} P(I) \times \log_2 P(I) \]

Expected information gain of a QCO as entropy reduction:

\[IG(O) = H(\zeta) - H(\zeta|O) = H(O) \]

Entropy of O computed using P(O):

\[H(O) = -P(O)\log_2 P(O) - P(\neg O)\log_2 P(\neg O) \]
Probability estimation for QCOs

Probability of a QCO using probabilities of the subsumed query interpretations:

\[P(O) = \sum_{I \in \zeta(O)} P(I) \]

Estimation of QCO probability using materialized part of the query hierarchy:

\[P(o) = \frac{\sum_{\zeta(s) \subseteq \zeta(o)} P(s)}{\sum_{\zeta(s) \subseteq \zeta(o)} P(s) + \sum_{\zeta(s) \cap \zeta(o)=\emptyset} P(s)} \]
Efficient hierarchy traversal

✅ Query initialization:
 ✅ Path indexing: for each table, index all paths leading to keywords within radius $r/2$ (bi-directional):
 ✅ Is independent of keyword query length

$T \times \text{avg}(E_t)^{r/2}$

✅ User interaction:
 ✅ Use path index to materialize QCOs and query interpretations incrementally by BF-k and DF-k
 ✅ Start expansion with the most probable QCOs
 ✅ Thresholds, time limits
Dataset and queries

Freebase data dump (June 2011). 7,500 tables, 20 mil. entities, 100 domains

<table>
<thead>
<tr>
<th>#Keywords</th>
<th>Avg. #nodes</th>
<th>Examples of keyword queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>location, book, event, disease, election</td>
</tr>
<tr>
<td>2</td>
<td>1.43</td>
<td>emperor album, hockey team, alpine skier</td>
</tr>
<tr>
<td>3</td>
<td>1.92</td>
<td>artist lived vancouver, founding figure kagyu</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>olympic athletes table tennis</td>
</tr>
<tr>
<td>5</td>
<td>2.11</td>
<td>canada hockey 2010 winter olympics</td>
</tr>
<tr>
<td>6</td>
<td>1.48</td>
<td>2011 san francisco international film festival</td>
</tr>
<tr>
<td>7</td>
<td>1.29</td>
<td>fictional character created by edgar allan poe</td>
</tr>
<tr>
<td>8</td>
<td>1.13</td>
<td>school type university of puerto rico at ponce</td>
</tr>
</tbody>
</table>

✓ higher complexity by [3-5] keywords
Interaction cost of query construction on Freebase

The mean and the standard deviation of the interaction cost

✓ Interaction cost can be significantly reduced and limited to a much smaller range using the ontology-based QCOs.
Efficient hierarchy traversal

✓ Materializing all complete queries with an expansion radius r (e.g. Discover)

$$ T_{k_i} \times \text{avg}(E_t)^{r*(K-1)} $$

✓ We use path indexing and bi-directional search once at query init

$$ T \times \text{avg}(E_t)^{r/2} $$

✓ We use path index to materialize partial and complete query interpretations incrementally and produce top-k results quickly

✓ Information gain of QCOs is estimated based on the materialized part of the hierarchy
1 node: football game
2 nodes: ami suzuki album
3 nodes: location leonardo da vinci lived

Response time of query construction on Freebase

The mean and the standard deviation of the initial and interaction response times

- Initial response time mostly stays within 2 seconds
- Interaction response time is always below 1 second
FreeQ: discussion

- Enable efficient and scalable query construction solutions for large scale Freebase data
- Involve ontologies e.g. Freebase hierarchy and YAGO+F to summarize database schema using abstract concepts
- Enriches schema with semantic information of YAGO ontology
- Uses efficient algorithms to materialize query interpretation space incrementally
Home assignment:

- Create a database (e.g. using MySQL) using DBLP toy example from the lecture

- Write a program to create Lucene indexes of the database content at the attribute and tuple levels

- Compare the resulting index sizes
 What is the reason for the difference?

- What are the advantages / disadvantages of the both indexes?

- Query the index to generate keyword interpretations of K="Michelle XML".
References and further reading

References:

Further reading:
