1 Search engine evaluation

1. Below is a table showing how three human judges rated the relevance of a set of 12 documents to a particular information need (0 = nonrelevant, 1 = relevant). Let us assume that you’ve written an IR system that for this query returns the set of documents \{4, 5, 6, 7, 9\}.

 a) Calculate the kappa measure between the three judges.
 b) Calculate precision, recall, and F_1 of your system if a document is considered relevant only if the three judges agree.
 c) Calculate precision, recall, and F_1 of your system if a document is considered relevant if either judge thinks it is relevant.

 \[
 \begin{array}{ccc}
 \text{DocID} & \text{Judge 1} & \text{Judge 2} & \text{Judge 3} \\
 1 & 0 & 1 & 0 \\
 2 & 0 & 1 & 1 \\
 3 & 0 & 1 & 1 \\
 4 & 0 & 1 & 1 \\
 5 & 1 & 0 & 1 \\
 6 & 1 & 0 & 1 \\
 7 & 1 & 0 & 0 \\
 8 & 1 & 0 & 0 \\
 9 & 1 & 1 & 1 \\
 10 & 1 & 1 & 0 \\
 11 & 0 & 0 & 0 \\
 12 & 0 & 0 & 1 \\
 \end{array}
 \]

2. A collection of documents contains 20 documents that are relevant for a given query. For this query, the search engine returns 8 relevant and 10 not relevant documents.

 a) Compute precision and recall of this search result as well as the F_1-measure.
 b) What are the advantages of the F_1-measure compared to the arithmetic mean of precision and recall?

3. A collection of documents contains 10 documents that are relevant for the query q. For this query, the search engines S_1 and S_2 return the following relevant (R) and non-relevant (N) documents:

 S_1: NNNRR NRNRR

Sergej Wildemann - wildemann@L3S.de
S_2: RRNNN NNRRN

Draw a precision-recall diagram for the both search results and compare the quality of the search results based on the **interpolated precision at 25% recall**.

<table>
<thead>
<tr>
<th>Recall(%)</th>
<th>$P(S_1)$</th>
<th>$P(S_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>