1. Phrase search

Given is a part of a positional index in the form „Term: doc1: position1, position2, ...; doc2: position1, position2, ...; etc.”:

- angels: 2: (36,174,252,651); 4: (12,22,102,432); 7: (17);
- fools: 2: (1,17,74,222); 4: (8,78,108,458); 7: (3,13,23,193);
- fear: 2: (87,704,722,901); 4: (13,43,113,433); 7: (18,328,528);
- in: 2: (3,37,76,444,851); 4: (10,20,110,470,500); 7: (5,15,25,195);
- rush: 2: (2,66,194,321,702); 4: (9,69,149,429,569); 7: (4,14,404);
- to: 2: (47,86,234,999); 4: (14,24,774,944); 7: (199,319,599,709);
- tread: 2: (57,94,333); 4: (15,35,155); 7: (20,320);
- where: 2: (67,124,393,1001); 4: (11,41,101,421,431); 7: (16,36,736);

1. Which documents (if any) are relevant to the following phrase queries?
 a. „fools rush in”
 b. „fools rush in” AND „angels fear to tread”

2. Use the index to reconstruct (parts of) the content of document 2.

3. Create a part of the biword index that is required to compute search results for the first query.

4. Assume the terms “in” and “to” are filtered out as stop words. Propose a way to combine a positional index with stop word filtering in a search system.
2. Skip-Lists

Given a search Boolean query $Q = \text{"ice AND age"}$.

The posting list of the term "ice" contains 16 elements:

Ice \rightarrow (4, 6, 10, 12, 14, 16, 18, 20, 22, 32, 47, 81, 120, 122, 157, 180)

The posting list of the term "age" contains one element:

Age \rightarrow (47)

How many posting elements and/or pointers need to be compared in the posting list intersection for answering this query using:

1. Traditional posting lists

2. Posting lists with skip pointers

Explain your answer!