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Introduction

* Graph Structures(entities, connections)
* social networks

* Facebook manages a social graph that is composed of people,
their friendships, subscriptions, likes, posts, and many other
connections.

1.39B active users in 2014
with more than 400B edges
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Introduction

* What is Apache Giraph?
* “Think like a vertex”

* Each vertex has an id, a value, a list of adjacent neighbors and
corresponding edge values

* Bulk synchronous processing(BSP)
* Break up to several supersteps(iteration)

* Messages are sent during a superstep from one vertex to another
and then delivered In the following supersteps

Tong Niu 4



pwungize
S NG

Neh ience — Inve nating the Future of Information and Communicatior,

%

E

gﬂ
!I'-F..

Introduction

* What i1s Apache Giraph?
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Introduction

* What is Apache Giraph?

v v }
l Worker l ‘ Worker I ‘ Worker |

* Master — Application coordinator
* Assigns partitions to workers
* Synchronizes supersteps
* Worker — Computation, messaging
* Load the graph from input splits
* Does the computation/messaging of its assigned partitions
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1. Flexible vertex/edge based input

* Original input:

* All data(vertex/edge) need to be read from the same record and
assumed to the same data source

* Modified input:
* Allow loading vertex data and edges from separate sources
* Add an arbitrary number of data sources
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2. Parallelization support

* Original:
 Scheduled as a single MapReduce |0ob

* Modified:
* Add more workers per machine
* Use local multithreading to maximize resource utilization
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3. Memory optimization

* Original:
* Large memory overhead because of flexibility

* Modified:

* Serialize the edges of every vertex into a bit array rather than using
native direct serialization methods

* Create an OutEdges interface that allow developers to achieve edge
stores

Tong Niu



4. Sharded aggregators
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* global computation(min/max value)
* provide efficient shared state across workers
* make the values available in the next superstep
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4. Sharded aggregators

* Original:

* Use znodes in zookeeper to store partial aggregated data from workers,
master aggregate all of them and write result back to znode for workers
to access it

* every worker has plenty of data that need to be aggregated
* Modified:

Randomly assigned to one of the workers
Distribute final values to master/workers
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K-Means clustering

Random centroid location Assignment to centroid Update centroids

In a graph application, input vectors are vertices, and centroids are
aggregators.
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1. Worker phases

* Add preApplication() to initialize positions of centroids

* Add preSuperstep() to calculate the new position for each of the
centroids before next superstep

2. Master computation

* Centralized computation prior to every superstep that can communicate with
the workers via aggregators
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3. Composable computation

* Allows us to use different message types ,combiners and
computation to build a powerful k-means application

4. Superstep splitting

* For a message heavy superstep
* send a fragment of messages to the destinations and do a
partial computation during each iteration
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Experiment results

Scalability of workers (200B edges) Scalability of edges (50 workers)
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Experiment results

* Giraph(200 machines) vs Hive(at least 200 machines)
* compare CPU time and elapsed time

* label propagation algorithm

Graph size | Hive Giraph Speedup
Total CPU Total CPU
| 9631Msecs | 1014Msecs |
o Elapsed Time | Elapsed Time
48B+ edges 1,666 mins 19 mins 87X
* Weighted PageRank
Grapﬂ s1ze Hive Giraph Speedup
. Total CPU Total CPU )
iEBr;:I_ices 16.5M secs 0.6M secs 26x
o e [ Elaped T | Elapred T | 0
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Conclusion & Future work

How a processing framework supports Facebook-scale production
workloads. We have described the improvements to Giraph.

1.Determine a good quality graph partitioning prior to our computation.
2.Make our computation more asynchronous to improve convergence

Speed.
3.Leverage Giraph as a parallel machine-learning platform
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