e e, Y - —
M ! --‘l"‘ - v A

One Trillion edges : Graph Processmg at Facebook-
Scale

L}
3 = _—
e = ¥ - <.
Il [=
— — -
—g -
- — E—
b = e
=
— r=
" - |-
- <,

Tong Niu
tong.niu.cn@outlook.com

"

-

11. Juli 2019 1

Neh ience — Investigating the Future of Information and Communication

Outline

* Introduction

* Improvements

* Experiment Results
* Conclusion& Future Work

* Discussion

Tong Niu

VEL = ILE — J¥ - L it il = ; 48 & L dTAvimaiiv) CIrid iddrainrad ’ il

Introduction

* Graph Structures(entities, connections)
* social networks

* Facebook manages a social graph that is composed of people,
their friendships, subscriptions, likes, posts, and many other
connections.

1.39B active users in 2014
with more than 400B edges

Tong Niu

Neh ience — Investigating the Future of Information and Communication

Introduction

* What is Apache Giraph?
* “Think like a vertex”

* Each vertex has an id, a value, a list of adjacent neighbors and
corresponding edge values

* Bulk synchronous processing(BSP)
* Break up to several supersteps(iteration)

* Messages are sent during a superstep from one vertex to another
and then delivered In the following supersteps

Tong Niu 4

pwungize
S NG

Neh ience — Inve nating the Future of Information and Communicatior,

%

E

gﬂ
!I'-F..

Introduction

* What i1s Apache Giraph?

a N\

2 Message
N1
.1
N2
9 atts Edge/Attribute
N3
M Active N Inactive

\ Superstep J/

Tong Niu

Neh ience — Investigating the Future of Information and Communication

Introduction

* What is Apache Giraph?

v v }
l Worker l ‘ Worker I ‘ Worker |

* Master — Application coordinator
* Assigns partitions to workers
* Synchronizes supersteps
* Worker — Computation, messaging
* Load the graph from input splits
* Does the computation/messaging of its assigned partitions

Tong Niu

Neh ience — Investigating the Future of Information and Communication

1. Flexible vertex/edge based input

* Original input:

* All data(vertex/edge) need to be read from the same record and
assumed to the same data source

* Modified input:
* Allow loading vertex data and edges from separate sources
* Add an arbitrary number of data sources

Tong Niu

NelD 2rnce — InVeE nating the Future of Information and Communicatiorn

2. Parallelization support

* Original:
 Scheduled as a single MapReduce |0ob

* Modified:
* Add more workers per machine
* Use local multithreading to maximize resource utilization

Tong Niu

Neh ience — Investigating the Future of Information and Communication

3. Memory optimization

* Original:
* Large memory overhead because of flexibility

* Modified:

* Serialize the edges of every vertex into a bit array rather than using
native direct serialization methods

* Create an OutEdges interface that allow developers to achieve edge
stores

Tong Niu

4. Sharded aggregators

[o=1 I'=1;
o T

* global computation(min/max value)
* provide efficient shared state across workers
* make the values available in the next superstep

nformation ana

elaaiaaivia ’

"

Tong Niu

10

Neh enice — Investigating the Future of Information and Communication

4. Sharded aggregators

* Original:

* Use znodes in zookeeper to store partial aggregated data from workers,
master aggregate all of them and write result back to znode for workers
to access it

* every worker has plenty of data that need to be aggregated
* Modified:

Randomly assigned to one of the workers
Distribute final values to master/workers

Tong Niu 11

Neb ience — Inve natinag the Future of Information and Communica

%
g
o~

K-Means clustering

Random centroid location Assignment to centroid Update centroids

In a graph application, input vectors are vertices, and centroids are
aggregators.

Tong Niu

12

3
1;l_-,"'--":.|| ung "-'E'n&‘r
9]

E’-; IVEL TICE — I - il it 1 f 4 = L FoOrmd slameraie elaiiaair e ’ ()]
B

-

lfj

]

113

.a-i

1. Worker phases

* Add preApplication() to initialize positions of centroids

* Add preSuperstep() to calculate the new position for each of the
centroids before next superstep

2. Master computation

* Centralized computation prior to every superstep that can communicate with
the workers via aggregators

Tong Niu 13

3
1;l_-,"'--":.|| ung "-'E'n&‘r
9]

E’-; IVEL TICE — I - il it 1 f 4 = L FoOrmd slameraie elaiiaair e ’ ()]
B

-

lfj

]

113

.a-i

3. Composable computation

* Allows us to use different message types ,combiners and
computation to build a powerful k-means application

4. Superstep splitting

* For a message heavy superstep
* send a fragment of messages to the destinations and do a
partial computation during each iteration

Tong Niu 14

Neh ience — Investigating the Future of Information and Communication

Experiment results

Scalability of workers (200B edges) Scalability of edges (50 workers)
500 500
375 375
v (¥
o L
— —
S 250 S 250
D (ab)
v v
125 125
o) o)
5O 100 150 200 250 300 1E+09 7E+10 1E+11 2E+11
of Workers # of Edges
+ Giraph Ideal + Giraph Ideal

Tong Niu 15

Neh ience — Investigating the Future of Information and Communication

Experiment results

* Giraph(200 machines) vs Hive(at least 200 machines)
* compare CPU time and elapsed time

* label propagation algorithm

Graph size | Hive Giraph Speedup
Total CPU Total CPU
| 9631Msecs | 1014Msecs |
o Elapsed Time | Elapsed Time
48B+ edges 1,666 mins 19 mins 87X
* Weighted PageRank
Grapﬂ s1ze Hive Giraph Speedup
. Total CPU Total CPU)
iEBr;:I_ices 16.5M secs 0.6M secs 26x
o e [Elaped T | Elapred T | 0

Tong Niu

16

Neh ience — Investigating the Future of Information and Communication

Conclusion & Future work

How a processing framework supports Facebook-scale production
workloads. We have described the improvements to Giraph.

1.Determine a good quality graph partitioning prior to our computation.
2.Make our computation more asynchronous to improve convergence

Speed.
3.Leverage Giraph as a parallel machine-learning platform

Tong Niu

17

Discussion

=30

nformation ana

eidiiaiired rENieid

Tong Niu

18

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

